Corrigendum: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation
نویسندگان
چکیده
The Atlantic Meridional Overturning Circulation (AMOC) is an important component of ocean thermohaline circulation. Melting of Greenland's ice sheet is freshening the North Atlantic; however, whether the augmented freshwater flux is disrupting the AMOC is unclear. Dense Labrador Sea Water (LSW), formed by winter cooling of saline North Atlantic water and subsequent convection, is a key component of the deep southward return flow of the AMOC. Although LSW formation recently decreased, it also reached historically high values in the mid-1990s, making the connection to the freshwater flux unclear. Here we derive a new estimate of the recent freshwater flux from Greenland using updated GRACE satellite data, present new flux estimates for heat and salt from the North Atlantic into the Labrador Sea and explain recent variations in LSW formation. We suggest that changes in LSW can be directly linked to recent freshening, and suggest a possible link to AMOC weakening.
منابع مشابه
Arctic–North Atlantic Interactions and Multidecadal Variability of the Meridional Overturning Circulation
Analyses of a 500-yr control integration with the non-flux-adjusted coupled atmosphere–sea ice–ocean model ECHAM5/Max-Planck-Institute Ocean Model (MPI-OM) show pronounced multidecadal fluctuations of the Atlantic overturning circulation and the associated meridional heat transport. The period of the oscillations is about 70–80 yr. The low-frequency variability of the meridional overturning cir...
متن کاملThe Sensitivity of the Atlantic Meridional Overturning Circulation to Freshwater Forcing at Eddy-Permitting Resolutions
The effect of increasing horizontal resolution is examined to assess the response of the Atlantic meridional overturning circulation (AMOC) to freshwater perturbations. Versions of a global climate model with horizontal resolutions ranging from 1.8° (latitude) 3.6° (longitude) to 0.2° 0.4° are used to determine if the AMOC response to freshwater forcing is robust to increasing resolution. In th...
متن کاملImpact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic Surface Air Temperature and Sea-Ice Variability
The simulated impact of the Atlantic Meridional Overturning Circulation (AMOC) on the low frequency variability of the Arctic Surface Air temperature (SAT) and sea-ice extent is studied with a 1000 year-long segment of a control simulation of GFDL CM2.1 climate model. The simulated AMOC variations in the control simulation are found to be significantly anti-correlated with the Arctic sea-ice ex...
متن کاملSurprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007--2008
In the process of open-ocean convection in the subpolar North Atlantic Ocean, surface water sinks to depth as a distinct water mass, the characteristics of which affect the meridional overturning circulation and oceanic heat flux. In addition, carbon is sequestered from the atmosphere in the process. In recent years, this convection has been shallow or non-existent, which could be construed as ...
متن کاملLong term ocean simulations in FESOM: Evaluation and application in studying the impact of Greenland Ice Sheet melting
The Finite Element Sea-ice Ocean Model (FESOM) is formulated on unstructured meshes and offers geometrical flexibility which is difficult to achieve on traditional structured grids. In this work the performance of FESOM in the North Atlantic and Arctic Ocean on large time scales is evaluated in a hindcast experiment. A water-hosing experiment is also conducted to study the model sensitivity to ...
متن کامل